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Abstract: 
UV radiation can induce photochemical processes in the atmospheres of exoplanet and 

produce haze particles. Recent transmission spectra of super-Earths and mini-Neptunes 

have demonstrated the possibility that exoplanets have haze/cloud layers at high altitudes 

in their atmospheres. Haze particles play an important role in planetary atmospheres 

because they affect the chemistry, dynamics, and radiation flux in planetary atmospheres, 

and may provide a source of organic material to the surface which may impact the origin 

or evolution of life. However, very little information is known about photochemical 

processes in cool, high-metallicity exoplanetary atmospheres. We present here 

photochemical haze formation in laboratory simulation experiments with UV radiation; 

we explored temperatures ranging from 300 to 600 K and a range of atmospheric 

metallicities (100×, 1000×, and 10000× solar metallicity). We find that photochemical 

hazes are generated in all simulated atmospheres, but the haze production rates appear to 

be temperature dependent: the particles produced in each metallicity group decrease as 

the temperature increases. The images taken with an atomic force microscope (AFM) 

show that the particle size (15 nm to 190 nm) varies with temperature and metallicity. 

Our results provide useful laboratory data on the photochemical haze formation and 

particle properties, which can serve as critical inputs for exoplanet atmosphere modeling, 

and guide future observations of exoplanets with the Transiting Exoplanet Survey 

Satellite (TESS), the James Webb Space Telescope (JWST), and the Wide-Field Infrared 

Survey Telescope (WFIRST). 
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1. INTRODUCTION  

Super-Earths and mini-Neptunes (generally any planet with size or mass between Earth's 

and Neptune's) are the most abundant types of planets among the ~3500 confirmed 

exoplanets (e.g., Borucki et al. 2011, Fressin et al. 2013). The atmospheres of these types 

of exoplanets are expected to span a large range of compositions (e.g., Elkins-Tanton & 

Seager 2008, Miller-Ricci et al. 2009, Schaefer et al. 2012, Moses et al. 2013, Hu & 

Seager 2014, Venot et al. 2015, Ito et al. 2015). The Transiting Exoplanet Survey 

Satellite (TESS) mission will further increase the number of super-Earths and mini-

Neptunes that will be amenable to atmospheric characterization by the James Webb 

Space Telescope (JWST), as well as other large ground-based and space-based telescopes 

in the future. The TESS mission (Sullivan et al., 2015) will target stars that are 10-100 

times brighter than those targeted with the Kepler mission; three-quarters of the stellar 

planetary hosts will be M-dwarfs, and the most planets orbiting M-dwarfs will have 

equilibrium temperatures (Teq) <1000 K. The atmospheres of a number of small planets 

(Rp < RNeptune) with cool temperatures (Teq <1000 K) have now been observed, and a 

majority of these planets show evidence for aerosols (clouds or hazes) (e.g., Kreidberg et 

al. 2014; Knutson et al. 2014a, 2014b; Dragomir et al. 2015). Condensate cloud and 

photochemical haze particles are present in many solar system atmospheres. They are 

also expected in exoplanet atmospheres based on our understanding of particle formation 

in planetary atmospheres. 

Particles play an important role in planetary atmospheres because they affect the 

chemistry, dynamics, and radiation flux in planetary atmospheres, and can therefore 

influence surface temperature and habitability. Photochemically generated hazes may 

provide a source of organic material to the surface which may impact the origin or 

evolution of life. The photochemistry induced by UV photons is universal in planet 

systems. Solar UV photons drive the photochemistry in atmospheres of solar system 

bodies (such as Venus, Earth, Jupiter, Saturn, Titan, Triton, and Pluto), and stellar UV 

radiation also induces photochemistry in the atmospheres of exoplanets. Studies show 

that the UV radiation	 around M dwarf planet hosts covers both far UV and near UV 

wavelengths; thus inclusion of UV driven atmospheric chemistry is important for 
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understanding atmospheres of planets orbiting most M dwarfs (e.g., France et al. 2013). 

Photochemistry is likely to play a major part in the atmospheres of planets with Teq 

<1000 K, especially for super-Earths and mini-Neptunes that may have enhanced 

atmospheric metallicity (Marley et al. 2013). Metallicity (Z) is defined as the fractional 

percentage of the chemical elements other than hydrogen and helium in a star or other 

object (solar metallicity, Zsun=0.0134). However, we currently have very little 

information about photochemical processes in these cool, metal-rich planetary 

atmospheres. Laboratory production and analysis of exoplanet hazes are essential for 

interpreting future spectroscopic observations and properly characterizing the 

atmospheres of these worlds. Recently, we reported the haze formation and particles size 

distribution in our plasma experiments (He et al. 2018, Hörst et al. 2018a) that probe a 

broad range of atmospheric parameters relevant to super-Earths and mini-Neptunes. Here, 

we present our investigation on photochemical haze formation by using UV radiation as 

energy source. We show that photochemical hazes are generated in these diverse 

atmospheres, and the haze production rate and the particle size varies with temperature 

and metallicity.  

2. MATERIALS AND EXPERIMENTAL METHODS  

2.1. Haze Production Setup  

Figure 1 shows a schematic of Planetary Haze Research (PHAZER) experimental setup at 

Johns Hopkins University (He et al. 2017, 2018; Hörst et al. 2018a). The initial gas 

mixtures for our experiments are calculated from the chemical equilibrium models of 

Moses et al. (2013), who examined the possible thermochemistry and photochemistry in 

the atmospheres of Neptune-sized and sub-Neptune-sized exoplanets. The equilibrium 

calculations relevant to this investigation were performed at conditions of 300, 400, and 

600 K at 1 mbar for 100×, 1000×, and 10000× solar metallicity. These high-metallicity 

chemical equilibrium models provide the initial conditions for our study, ensuring that 

the pressure, temperature, and gas compositions used in the experiments are self-

consistent. As listed in Table 1, only gases with a calculated abundance of 1% or higher 

are included to maintain a manageable level of experimental complexity; this resulted in 
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no nitrogen-bearing species in two cases and the exclusion of sulfur-bearing species. 

Other, lower abundance species not included in these experiments (e.g., Na2S, KCl) will 

condense in this temperature range and could serve as condensation nuclei. 

The procedure for preparing the gas mixtures can be found in He et al (2018). The 

prepared gas mixture flows through a 15-meter stainless steel heating coil where the 

gases are heated to the experimental temperature (600 K, 400 K, or 300 K), and then into 

a stainless-steel reaction chamber where they are exposed to UV photons, inducing 

chemical processes that lead to the formation of new gas phase products and solid 

particles.  The UV light source is a UV lamp (HHeLM-L, Resonance LTD.). The lamp 

was set to produce continuum UV photons from 110 nm to 400 nm. The total UV flux of 

the lamp is about 3×1015 photons/(sr*s), and the VUV and UV output spectrum can be 

found at www.resonance.on.ca. Lamps with similar wavelength range and flux are used 

for simulating photochemistry in atmosphere of early Earth and Titan (see e.g., Trainer et 

al. 2006, 2012; Sebree et al. 2014; Hörst et al. 2018b). Although the photons in this 

wavelength range are not sufficiently energetic to directly dissociate very stable 

molecules such as N2 or CO, previous studies show that incorporation of nitrogen in 

organic products produced from N2/CH4 mixtures that were irradiated with similar UV 

lamps, suggesting an unknown photochemical process is occurring to incorporate N into 

the molecular structure of the aerosol (Hodyss et al. 2011, Trainer et al. 2012). The 

organics produced in these experiments could be the source for life to arise (e.g., Miller 

1953; Sagan & Khare 1971; Trainer et al. 2006, 2012; Hörst et al. 2012, 2018b), since 

many nitrogenous molecules, such as amino acids and nucleobases, are building blocks of 

life. 

The gases flow continuously under UV irradiation for 72 hr and solid particles (if 

produced in the experiment) are deposited on the wall of the reaction chamber and quartz 

substrate discs (purchased from Ted Pella, Inc., made from high quality fused quartz and 

optical-grade clear polished on both sides) which were placed at the bottom of the 

chamber. We ran our AC glow discharge (plasma) experiments for 72 hr under the same 

conditions (He et al. 2018, Hörst et al. 2018a), thus we followed the same procedure here 

for comparison. The chamber is further kept under vacuum for 48 hr to remove the 
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volatile components, and then transferred to a dry (<0.1 ppm H2O), oxygen free (<0.1 

ppm O2) N2 glove box (Inert Technology Inc., I-lab 2GB) where the quartz discs 

containing deposited particles are retrieved under dry N2 atmosphere. The discs are kept 

in the glove box and wrapped in foil to avoid exposure to air and light, respectively. 

 
Figure 1. Schematic of the experimental setup used for this work. Due to the large variety of 
gases used for these experiments, the schematic shown here provides a general idea of the setup. 
The detailed procedure was discussed in He et al. (2018).  

Table 1.  Summary of initial gas mixtures. Our experimental phase space spans 100× to 
10000× solar metallicity and temperatures ranging from 300 to 600 K	with compositions 

calculated from thermochemical equilibrium at a stratospheric pressure of 1 mbar.  
 

 100× 1000× 10000× 

600 K 72.0% H2  42.0% H2  66.0% CO2 
 6.3% H2O 20.0% CO2  12.0% N2  
 3.4% CH4 16.0% H2O 8.6% H2  
 18.3% He 5.1% N2  5.9% H2O  
  1.9% CO 3.4% CO 
  1.7% CH4 4.1% He 
  13.3% He  

400 K 70.0% H2  56.0% H2O  67.0% CO2  
 8.3% H2O  11.0% CH4  15.0% H2O  
 4.5% CH4  10.0% CO2  13.0% N2  
 17.2% He 6.4% N2 5.0% He 
  1.9% H2  
  14.7% He  

300 K 68.6% H2  66.0% H2O  67.3% CO2  
 8.4% H2O 6.6% CH4  15.6% H2O  
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 4.5% CH4 6.5% N2  13.0% N2 
 1.2% NH3  4.9% CO2  4.1% He 
 17.3% He 16.0% He  

 

2.2. Atomic Force Microscopy (AFM) Measurement 

Several different techniques have been used to measure the particle sizes of Titan haze 

analogs prepared in laboratories, including Scanning Mobility Particle Sizer (SMPS, see 

e.g., Trainer et al. 2006; Hörst & Tolbert 2013 & 2014), Scanning Electron Microscopy 

(SEM, see e.g., Szopa et al. 2006, Hadamcik et al. 2009, Sciamma-O’Brien et al. 2017), 

Transmission Electron Microscopy (TEM, see e.g., Trainer et al. 2006, Curtis et al. 

2008), and AFM (Hasenkopf et al. 2011). Here we use AFM because it can image the 

original sample surface without requiring an additional coating or exposing the sample to 

electron radiation. 

The surface morphology of the particles on the quartz discs is examined using a Bruker 

Dimension 3100 atomic force microscope (Bruker Nano, Santa Barbara, CA). The tip 

(silicon probe, Tap300-G, Ted Pella, Inc) and the setting (tapping mode) for the 

measurement are the same as our previous study (He et al. 2018). The tip radius is less 

than 10 nm and conical angle at the apex is less than 20°. The AFM images are acquired 

by scanning the sample under ambient laboratory conditions (298 K) at a scan rate of 1.5 

Hz. 

3. RESULTS AND DISCUSSION  

3.1. Photochemical Haze Formation and AFM Images of the Particles 

In our plasma experiments, all simulated atmospheres produced particles, but the particle 

production rate varied substantially, as high as 10 mg/hr for the cooler (300 and 400 K) 

1000× metallicity experiments (Hörst et al. 2018a). For our current UV experiments, no 

particles were observed by visual inspection on the walls of the chamber after 72 hr flow 

under UV irradiation. No obvious difference between the quartz discs from the 

experiments and the blank quartz disc (not exposed to UV or experimental gas mixtures) 

could be visually observed. This suggests that the production rates must be very low even 
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if the photochemical processes generate haze particles. Compared to the clear discs from 

current UV experiments, our previous plasma experiments for the same gas mixtures 

produced many more particles and formed colorful films (He et al. 2018). It is not 

surprising since the haze production rates from UV experiments are usually lower than 

those from plasma experiments (Peng et al. 2013, Hörst et al. 2018b). 

Since it is difficult to determine whether or not haze particles are formed by visual 

examination, we observed the discs under AFM. Figure 2 shows AFM images of these 

discs and a clean blank quartz disc, displaying 1 µm x 1 µm scanning area for each one. 

AFM image displays that the blank disc has a smooth, clean surface. Compared to the 

blank disc, spherical particles are observed on the discs from all nine experiments, 

indicating that haze particles are produced from photochemical processes in all nine 

diverse atmospheres. Figure 2 shows that the number and size of the particles from these 

experiments have great variations with the different gas mixtures at different temperature. 

There are numerous small particles produced from the 400 K experiments, while the 

600K and 300 K experiments generate fewer particles with broader size range. For all 

compositions, the 400 K experiments produced the smallest particles and the 300 K 

experiments typically produced the largest particles, despite the fact that the initial gas 

compositions were very similar at these two temperatures. The 600 K experiments had 

particle sizes intermediate to those at 300 and 400 K. From the AFM images, the 

diameter of the particle can be determined from its projection on the x-y plane. This 

method gives an accurate result (measurement errors are less than 3 nm) in the size range 

we measured (Villarrubia 1997, Klapetek et al. 2011). For the 600 K experiments, the 

particles (diameter 20 to 110 nm) are sparsely spread on the discs, while for the 400 K 

experiments, numerous small particles (diameter 15 to 60 nm) are densely deposited on 

the quartz disc. The 300 K cases produce particles with wider size range (diameter 35 to 

190 nm).  
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Figure 2. AFM 3D images of the particles deposited on quartz discs. Scan area is 1 µm×1 µm. 
Blank is the AFM image of a clean blank quartz disc. The height scale of the images is 50 nm for 
the 300 K and 600 K experiments, 20 nm for the 400 K experiments to better show the small 
particles, and also 20 nm for the blank disc. The root mean square (RMS) roughness (Rq) of the 
film (1 µm×1 µm) is shown under the images. The roughness (< 3 nm) indicates the films are 
smooth.  
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As shown in the AFM images (Figure 2), the haze particles are produced from 

photochemical processes in all nine diverse atmospheres. However, the production rates 

are so low in these UV experiments, and there is not enough solid produced to collect and 

weigh. Therefore, it is difficult to compare the production rates of these experiments. Due 

to the low production rate, the particles are assumed to be deposited as single layer on the 

quartz disc, as shown in Figure 2. Very few or no aggregates are observed in the AFM 

images, indicating that most of the haze particles produced in the phase space we 

investigated here are monomers. The roughness (< 3 nm) indicates the films are smooth, 

supporting single layer of monomers on the discs. The general size range from all nine 

experiments is from 15 nm to 190 nm, which is similar to that (20 nm to 180 nm) from 

our previous plasma experiments at the same conditions. This is a relatively narrow 

range, considering the huge differences in the gas compositions, temperatures, and energy 

sources. It could imply some similarity in the nucleation and growth mechanism. For 

instance, the same flow rate (10 sccm) and the pressure range (few Torr) could be 

responsible for the narrow size range. However, it is very difficult to address the detailed 

mechanism due to the complexity of the physics and chemistry in these gas mixtures.  

3.2. Particle Size Distributions  

The general size ranges are similar for both UV and plasma experiments, but the particle 

size range for each particular case (temperature by metallicity) is distinct. In order to 

better reveal the particle size distribution, we analyzed the particle size in a larger 

scanning area (10 µm x 10 µm) for each case, and plotted the percentage of particles 

(N/Ntotal×100%) in 5 nm bins (Figure 3). As shown in Figure 3, the haze particles are 

bigger and have a wider range at 300 K; the particles formed from the 100× metallicity 

mixture are between 35 nm and 125 nm in diameter, those from the 1000× mixture are 

between 60 nm and 190 nm, while those from the 10000× mixture vary from 80 nm to 

130 nm. In contrast, the haze particles formed at 400 K are smaller but more uniform: 15 

nm to 50 nm for the 100× mixture, 20 nm to 60 nm for the 1000× mixture, and 25 nm to 

60 nm for the 10000× mixture. Compared to the 300 K and 400 K result, the particles 

produced at 600 K appear in the middle for both the average size and the size distribution 

range: 60 nm to 110 nm for the 100× mixture, 20 nm to 80 nm for the 1000× mixture, and 
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30 nm to 90 nm for the 10000× mixture. Unlike the plasma experiments (He et al. 2018), 

no bimodal size distribution is noticed in current UV experiments (Figure 3), confirming 

that most of the particles are monomers.  

The experimental matrix varied in temperature and metallicity and all 9 initial gas 

mixtures are compositionally distinct. Previous studies showed that the initial gas 

composition has an important impact on the particle size of Titan haze analogs 

(Hadamcik et al. 2009, Hörst & Tolbert 2014, Sciamma-O’Brien et al. 2017). However, 

our results suggest that the particle sizes are also temperature dependent. The temperature 

dependence of the particle size is more obvious for the particles formed in the 300 K and 

400 K experiments, since the compositions do not vary much between the 300 K and 400 

K experiments. Such temperature dependence was not observed in our previous plasma 

experiments, indicating that the temperature could play an important role in the 

photochemical formation of the haze particles. The temperature directly affects the 

energy levels, movements, and collisions of different molecules, and the vapor pressure 

of newly formed species, thus impacting the reaction rate coefficient, the formation and 

the nucleation of the particles. In the 400 K experiments, there might be more nucleation 

centers that induce the formation of a large number of small and uniform particles. In 

contrast, heterogeneous reactions on fewer nucleation centers could lead to the broader 

size range in 300 K and 600 K experiments, as observed in the plasma experiments (He et 

al. 2018). However, the reactions and the resulting compositions for each case could be 

totally different, so further comprehensive investigations are required to fully understand 

how the temperature affect the particle size in different gas mixtures.  
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Figure 3. Size distribution of the haze particles formed in the nine experiments. The haze 
particles formed at 300 K are bigger and in wider range, while those at 400 K are smaller but 
more uniform; the particles produced at 600 K appear in the middle for both the average size and 
the size distribution range compared to those at 300 K and 400 K. 
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the particles based on the number and size distribution we learned from the AFM images: 

𝑉 = #
$

%
%&' 𝐷%)𝑁%                                                       (1) 

where Di is the median particle diameter in each bin, Ni is the number of particles in each 

bin over the total available surface area within the chamber.  

If we assume the particle densities are the same for all the nine cases and do not change 

as function of size, we can calculate the total mass of the particles by giving a density 

equal to that of Titan tholin sample (He et al. 2017). Previous studies show that the 

particle density varies with the initial gas mixture (Hörst & Tolbert 2013 & 2014, He et 

al. 2017). Nine gas mixtures investigated here are compositionally distinct, so the particle 

densities for nine experiments are unlikely to be the same. Although the constant density 

assumption we made here may not be correct, it allows us to estimate the production rate, 

and to compare to those from other experiments. The total mass (m) of the particles 

equals volume times density [r = 1.38 g cm-3, average density of Titan tholin samples 

from previous study (He et al. 2017)]. 

The total volume and mass of the haze particles produced in the nine experiments are 

plotted in Figure 4, and the production rates are listed in Table 2. The production rates of 

our previous experiments (He et al. 2018, Hörst et al. 2018a) are also included in Table 2. 

For those plasma experiments that did not produce enough solid particles to collect and 

weigh, the production rates are determined by the method described above. As shown in 

Table 2, the production rates of the UV experiments are lower than those of the plasma 

experiments, except the 100× experiments at 300 K that we could not compare directly 

(since the production rates calculated for the 100× plasma experiment at 300 K is a lower 

limit). Figure 4 and Table 2 shows that the 1000× experiment at 300 K has the highest 

production rate (0.060 mg/hr) among the nine UV experiments. Interestingly, the 1000× 

plasma experiment at 300 K also has the highest production rate, although it has much 

higher rate (10.43 mg/hr). The 1000× experiments at 300 K have the highest haze 

production rate for both energy sources, indicating that we expect small, cool planets 

with high metallicity atmospheres to have substantial haze production. As shown in 
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Figure 4 and Table 2, the haze production rate in the UV experiments decrease as the 

temperature increases for each metallicity group, except the 10000× experiments that 

have similar production rates at 400 K and 600 K. This temperature dependence could be 

related to the vapor pressure of newly-formed species. The vapor pressure of any 

substance increases as the temperature increases. At lower temperature (300 K), the 

newly-formed species have lower vapor pressure and tend to condense and/or nucleate, 

generating more particles; at higher temperature (400 K and 600 K), the vapor pressure of 

the newly-formed species increase, and these species are more likely to stay in gas phase 

and be removed from the system. Further compositional analysis of both the gas phase 

and solid phase products are required to verify this idea. 

The nine experiments started from different gas mixtures, but all led to the formation of 

haze particles, demonstrating that there are multiple photochemical pathways for organic 

haze formation. For the 100× and 1000× experiments, CH4 provides the carbon source for 

the organic haze, but the 10000× experiments have no CH4 at all. For the 10000× cases, 

both current UV experiments and our previous plasma experiments (He et al. 2018) 

generate organic haze particles. The haze formation in the absence of methane indicates 

other carbon sources for the organics, such as CO and CO2. Previous studies have shown 

that a variety of organic compounds can be produced in the gas mixture of CO/N2/H2O or 

CO2/N2/H2O under UV (or plasma) irradiation (See eg., Bar-Nun & Chang 1983, 

Plankensteiner et al. 2004, Cleaves et al. 2008). Our result demonstrates that CO and CO2 

could provide carbon source for organic hazes, and CH4 is not necessarily required. It is 

important to note that the production rates are not simply a function of carbon abundance. 

Many factors, such as the reducing/oxidizing environment of the system, the absorption 

cross-sections of different reaction species, and the temperature, can affect the 

photochemical haze production. In addition, all 9 gas mixtures investigated are 

compositionally distinct. Therefore, further work is necessary to understand the complex 

photochemical processes leading to the formation of organic hazes.  
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Figure 4. The total volume and the total mass of the particles produced in the nine experiments. 
We assume a fixed particle density (r = 1.38 g cm-3) to calculate total mass of the particles (the 
right axis). The total volume or the total mass of the particles produced in each metallicity group 
decrease as the temperature increases, except the 10000× experiments that have similar 
production rates at 400 K and 600 K. The 1000× experiment at 300 K has the highest production 
rate among the nine UV experiments.  

 
Table 2.  Production rates (mg h–1) of the haze particles produced in our previous plasma 

experiments (Hörst et al. 2017) and current UV experiments 
 100x 1000x 10000x 

 Plasma UV Plasma UV Plasma UV 

600 K 0.04 0.008* 0.15 0.010* 0.31 0.013* 
400 K 0.25 0.019* 10.00 0.021* 0.013* 0.010* 
300 K >0.016* 0.041* 10.43 0.060* 0.052* 0.018* 

 

 

“*” indicates that the experiment did not produce enough solid particles to collect and weigh, and the 
production rate is determined by the method described in the text. The method applies to experiments 
with single layer of particles. “>” indicates a production rate lower limit since the AFM image (He et 

al. 2018) suggests there might be multiple layers of particles deposited on the substrate. 
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approach here provides insights into which regions of temperature and metallicity phase 

space may result in photochemical haze production. Our result shows that photochemical 

hazes are produced in a variety of atmospheres, suggesting that haze layers could be more 

ubiquitous in exoplanet atmospheres than we thought. It should be noted that some minor 

components that are excluded in our initial gas mixtures (such as sulfur species) might be 

important for haze formation in exoplanet atmospheres (Zahnle et al. 2016, Gao et al. 

2017). The photochemical organic haze formation in exoplanet atmospheres could affect 

the habitability of the planet in two aspects. First, the photochemical haze could provide 

the organic materials prebiotically for life to arise, like that on the early Earth. Second, 

haze particles can interact with radiation, such as scattering and absorption, thus 

influencing the energy budget and the atmospheric and surface temperature of the 

exoplanets and their potential habitability.  

Our study also provides constraints on the particle sizes of the photochemical hazes. The 

size distribution of the haze particles varies with metallicity and temperature. The haze 

particles of different sizes will scatter light differently, and thus affect the thermal 

structure of the exoplanet atmospheres. However, very little information is known about 

particle sizes in exoplanet atmospheres; wide size ranges, from 5 nm to 10,000 nm, are 

used in exoplanet atmospheric models (see e.g., Howe & Burrows 2012, Arney et al. 

2016, Gao et al. 2017). Although a variety of models have been tried to constrain particle 

sizes, the results are not satisfactory. For example, several studies attempted to reproduce 

the featureless transit spectrum of GJ1214b, where we see strong evidence for aerosols, 

but these studies did not reach an agreement on the particle sizes:  One study (Morley et 

al. 2015) showed that a range of particles (10 nm to 300 nm) can create featureless 

transmission spectra; while the particle radii are around 500 nm from another study 

(Charnay et al. 2015). The size range (15 nm to 190 nm) from our current UV 

experiments is comparable to that (20 nm to 180 nm) from previous plasma experiments 

(He et al. 2018). The particles produced in both types of experiments fall within the size 

range discussed by Morley et al. (2015), suggesting that small particles are more likely to 

form in the atmosphere of GJ1214b. The small particles lie in the Rayleigh scattering 

regime for visible and infrared (IR) photons, and will scatter short wavelengths more 

efficiently. The haze particles in this regime would have a great impact on the geometric 
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albedo of the exoplanet in visible and near IR regions (0.4 µm to 1.0 µm) (McCullough et 

al. 2014, Morley et al. 2015, Sing et al. 2016, Gao et al. 2017), which could influence the 

detectability of directly imaged exoplanets by the Coronagraph Instrument on the Wide-

Field Infrared Survey Telescope (WFIRST) (Spergel et al. 2015). To fully understand the 

effect of the haze particles on observations, further study on their optical, thermal, and 

compositional properties are required.  

4. CONCLUSIONS 

We investigated the photochemical haze formation in a range of planetary atmospheres 

by conducting laboratory experimental simulations with the PHAZER chamber (He et al. 

2017), and observed the particle sizes using AFM. Our result shows that photochemical 

hazes are produced in all nine UV experiments, and the haze production rates appear to 

be temperature dependent: the particles produced in each metallicity group decrease as 

the temperature increases. The AFM images demonstrate that the particle size (15 nm to 

190 nm) varies with temperature and metallicity. For all compositions, the particles 

formed at 300K are the largest and those formed at 400 K are the smallest particles, 

despite the fact that the initial gas compositions were very similar at these two 

temperatures. The particles formed at 600 K are intermediate. The presence of haze 

particles significantly affects atmospheric temperature structures and could provide 

organic material to the surface of a planet, thereby impacting its habitability. The result 

from our first experimental simulations with UV radiation provides critical inputs for 

modeling the atmospheres of exoplanets, and valuable laboratory data for future 

observations with facilities such as TESS, JWST, and WFIRST.  

 

This work was supported by the NASA Exoplanets Research Program Grant 
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